Grand Test - SPP-180421

SBI PO Preliminary Grand Test - SPP-180421 **HINTS & SOLUTIONS**

ANSWER KEY					
1. (4)	21. (2)	41.(1)	61.(2)	81.(3)	
2. (1)	22. (2)	42.(2)	62.(1)	82.(2)	
3. (2)	23. (3)	43.(3)	63.(4)	83.(4)	
4. (5)	24. (3)	44.(2)	64.(2)	84.(2)	
5. (4)	25.(2)	45.(3)	65.(2)	85.(2)	
6. (2)	26.(4)	46.(4)	66.(4)	86.(2)	
7. (4)	27.(5)	47.(3)	67.(4)	87.(1)	
8. (1)	28.(1)	48.(3)	68. (3)	88.(3)	
9. (3)	29.(2)	49.(4)	69.(3)	89.(1)	
10. (3)	30.(1)	50.(2)	70.(5)	90.(5)	
11.(4)	31. (2)	51. (5)	71.(2)	91.(2)	
12.(1)	32. (2)	52. (4)	72.(1)	92.(5)	
13.(3)	33.(3)	53. (3)	73.(2)	93.(5)	
14.(1)	34. (1)	54. (2)	74.(5)	94. (1)	
15.(4)	35.(5)	55. (1)	75.(5)	95.(5)	
16. (4)	36. (2)	56.(4)	76.(1)	96.(1)	
17. (2)	37. (3)	57.(5)	77.(1)	97.(2)	
18. (4)	38. (4)	58.(5)	78.(4)	98.(3)	
19. (2)	39. (1)	59.(5)	79.(3)	99.(4)	
20. (4)	40. (5)	60.(3)	80.(1)	100.(1)	

HINTS & SOLUTIONS

- 1.(4) step - burden
- 2.(1) emergence - afford
- 3. (2) spent - bounds
- 4. (5) challenge - choose
- stress including 5.(4) 6.(2) В 7. (4) Ε 9. (3) F 8.(1) А
- 10. (3) С
- 11.(4) Here, to pay its employees should be used because subject (airline) is singular.
- 12.(1) The structure of a sentence in Present Perfect Tense is : Subject + has/have + V₃ (Past Participle) Hence, we have recently begun should be used here.
- 13.(3) Here, Noun not an Adjective should be used. Hence, the management's confidence should be used.
- Here, In spite of the fact that/Despite the fact that ... 14.(1) should be used.
- 15.(4) The structure of a sentence in Present Progressive : Subject + is/am/are + V_4 (V¬ing)

Hence, companies are investing in India should be used here.

- A 'social media-16. (4)
- 17. (2) Only a
- 18. (4) Both a and c
- 19. (2) Those who go to the websites of newspapers to look for news, many Facebook users aren't actually looking to get news while they are on the network. But they end up getting news.
- Google Plus, has even remotely come close to Facebook. 20. (4) Lure
- 21. (2) Unavoidable 22. (2)
 - 23. (3) Circumstance 24. (3) Disapproval
 - 25.(2) Advantage 26.(4) competing 27.(5) search 28.(1) solution
 - beyond 30.(1) failure 29.(2)
 - $1.16 x^2 + 20x + 6 = 0$ 31. (2)

$$\Rightarrow 8x^2 + 10x + 3 = 0$$

$$\Rightarrow 8 x^{2} + 6x + 4x + 3 = 0$$
$$\Rightarrow 2x (4x + 3) + 1 (4x + 3) = 0$$

$$\therefore x = -\frac{1}{2} \text{ or } -\frac{3}{2}$$

$$\Rightarrow 5y(y+3) + 4(y+3) = 0$$
$$\Rightarrow (y+3) (5y+4) = 0$$

$$\therefore y = -3 \text{ or } -\frac{4}{5}$$

OFR Clearly, x > y $1.18 x^{2} + 18x + 4 = 0$ 32. (2) \Rightarrow 9 x² + 9x + 2 = 0 \Rightarrow 9 x² + 6x + 3x + 2 = 0

$$\Rightarrow 3x (3x + 2) + 1 (3x + 2) = 0$$
$$\Rightarrow (3x + 1) (3x + 2) = 0$$
$$\therefore x = -\frac{1}{2} \text{ or } -\frac{2}{2}$$

II.
$$12 y^2 + 29y + 14 = 0$$

$$\Rightarrow 12 y^2 + 21y + 8y + 14 = 0$$

$$\Rightarrow 3y (4y + 7) + 2 (4y + 7) = 0$$

$$\Rightarrow (3y + 2) (4y + 7) = 0$$

$$\therefore y = -\frac{2}{3} \text{ or } -\frac{7}{4}$$

33.(3) I. 8 x^2 + 6x - 5 = 0 \Rightarrow 8 x² + 10x - 4x - 5 = 0 \implies 2x (4x + 5) -1 (4x+ 5) = 0 \Rightarrow (2x - 1) (4x + 5) = 0

Gran	d Test – SPP-180421		ACE
	$\therefore x = \frac{1}{2} \text{ or } -\frac{5}{4}$		Science $\rightarrow \left(3500 \times \frac{22}{100} - 165\right) = 770 - 165 = 605$
	II. $12y^2 - 22y + 8 = 0$		Commerce $\rightarrow \left(3500 \times \frac{12}{100} - 315\right) = 420 - 315 = 105$
	$\Rightarrow 6 y^2 - 11y + 4 = 0$ $\Rightarrow 6 y^2 - 8y - 3y + 4 = 0$		Management $\rightarrow \left(3500 \times \frac{16}{100} - 180\right) = 560 - 180 = 380$
	$\Rightarrow 2y (3y - 4) - 1 (3y - 4) = 0$ $\Rightarrow (3y - 4) (2y - 1) = 0$ 36 37	. (2)	Required number of boys = $380 + 430 = 810$ Required ratio = $570 \cdot 605 = 114 \cdot 121$
	$\therefore y = \frac{4}{3} \text{ or } \frac{1}{2}$ $38}{39}$. (4) . (1)	Required number of girls = 165 + 315=480 New number of management students altogether
	Clearly, $x \le y$		$= 380 + 180 + 165 \times \frac{20}{100}$
34. (1)	$1.1/x^{2} + 48x - 9 = 0$ $\Rightarrow 17 x^{2} + 51x - 3x - 9 = 0$ 40	. (5)	= 380 + 180 + 33 = 593 Number of girls enrolled in Arts, Science and Commerce
	$\Rightarrow 17x (x + 3) - 3 (x + 3) = 0$ $\Rightarrow (x + 3) (17x - 3) = 0$		= 570 + 165 + 315 = 1050
	$\therefore x = -3 \text{ or } \frac{3}{17} $ 41	.(1)	Books on Economics are to be kept together. Hence, we
	II. $13 y^2 - 32y + 12 = 0$		are to arrange 3 books on management, 4 books on Statistics and one book on Economics.
	$\Rightarrow 13 y^2 - 26y - 6y + 12 = 0$ $\Rightarrow 13y(y - 2) - 6(y - 2) = 0$		These can be arranged in 8! ways. Again, 4 books on Economics can be arranged together in
	$\Rightarrow (y - 2) (13y - 6) = 0$		4! ways. ∴ Total number of arrangements = 81 × 41 = 967690
	$\therefore y = 2 \operatorname{or} \frac{6}{13}$.(2)	$[n! = 1.2.3.4 \dots (n -) (n)]$ If the amount borrowed be Rs. x. then
35.(5)	Clearly, $x < y$ By equation I \times 2 + equation II.		$\frac{x \times 4 \times 3}{100} + \frac{x \times 8 \times 2}{100} \times \frac{x \times 9 \times 2}{100} = 19550$
	8X + 14y = 418 12x -14y = -38		$\Rightarrow \frac{12x}{100} + \frac{16x}{100} + \frac{18x}{100} = 19550$
	$\frac{20x}{x} = \frac{380}{19} = 19$		$\Rightarrow 12x + 16x + 18x = 1955000 \Rightarrow 46x = 1955000$
	20 From equation I,	<u> </u>	$\Rightarrow x = \frac{1955000}{46} = \text{Rs. } 42500$
	$4 \times 19 + 7y = 209$ $\Rightarrow 7y = 209 - 76 = 133$.(3)	Let the length of the rectangular field = x metre 3x
	$\therefore y = \frac{133}{7} = 19$		\therefore Its breadth = $\frac{3x}{4}$ metre
36-40.	Number of girls :		According to the question, = $x \times \frac{3x}{2} = 300$
	$11 \rightarrow 1500 \times \frac{100}{100} = 270$		$4 \Rightarrow x^2 = 300 \times \frac{4}{2} = 400$
	Arts $\rightarrow 1500 \times \frac{10}{100} = 570$		$\Rightarrow x = \sqrt{400} = 20$
	Science $\rightarrow 1500 \times \frac{11}{100} = 165$		\therefore length = 20 metre and breadth $-\frac{3}{2} \times 20 = 15$ metre
	Commerce $\rightarrow 1500 \times \frac{21}{100} = 315$		$\frac{1}{20} \text{ m}$
	Management $\rightarrow 1500 \times \frac{12}{100} = 180$		15 m
	Number of boys:		Longth of the field with garden
	$\text{IT} \rightarrow \left(3500 \times \frac{20}{100} - 270\right) = 700 - 270 = 430$		= $20 + 1.5 \times 2 = 23$ metre Breadth of the field with garden
	Arts $\rightarrow \left(3500 \times \frac{30}{100} - 570\right) = 1050 - 570 = 480$		= $15 + 1.5 \times 2 = 18$ metre \therefore Its area = $23 \times 18 = 414$ square metre
			\therefore Area of the garden = 414 – 300 = 114 square metre

Grand Test – SPP-180421

(I-

			14 × 2 + 2 × 2 = 28 + 4 = 32
44.(2)	4x + 5y = 83(i)		32 × 3 + 2 × 3 = 96 + 6 = 102
	3x 21 x 21 27		$102 \times 4 + 2 \times 4 = 408 + 8 = 416$
	$\frac{1}{2y} = \frac{1}{22} = \frac{1}{y} = \frac{1}{22} = \frac{1}{3} = \frac{1}{11}$		$416 \times 5 + 2 \times 5 = 2080 + 10 = 2090$
	7		410 ~ 5 + 2 ~ 5 = 2000 + 10 = 2090
	$\Rightarrow x = \frac{7}{2} y$ (ii)		$\cdot \cdot ? = 2090 \times 6 + 2 \times 6 = 12540 + 12 = 12552$
	11 ³ 11 ³		3
	From equation (i),	55. (1)	$10 \times \frac{3}{2} = 15$
	. 7		2
	$4 \times \frac{1}{11}y + 5y = 83$		$15 \times \frac{4}{-} = 15$
	$\rightarrow 28v \pm 55v = 012 \rightarrow 83v = 012$		4
	$\Rightarrow 20y + 30y - 713 \Rightarrow 00y - 713$		$15 \times \frac{5}{-125}$
	\Rightarrow y = $\frac{913}{11}$ = 11		$13 \times - = 12.3$ 6
	83		б
	From equation (ii) $\mathbf{x} = \frac{7}{2} \times 11 = 7$		$12.5 \times \frac{1}{9} = 9.375$
	$\frac{1}{11}$		8
	∴ y – x = 11 – 7 = 4		$9.375 \times \frac{7}{2} = 6.5625$
45.(3)	Let the speed of boat in still water = x kmph		10
	X Incode		$\cdot 2 - 65625 \times \frac{8}{-4375}$
	\therefore Speed of current = $-\frac{1}{2}$ kmpn		$1.1 = 0.5025 \times \frac{1}{12} = \frac{4.575}{12}$
	- 30	56.(4)	Number of trees planted ' NGO-A and NGO-B together:
	When boat runs downstream, $\frac{30}{30} = 2$		Bihar \implies 100 + 60 = 160
	$x + \frac{x}{2}$		$Punjab \implies 120 + 80 = 200$
		D A	Harvana \implies 140 + 80 = 220
	$\Rightarrow \frac{30 \times 2}{2} = 2 \Rightarrow 6x = 60 \Rightarrow x = \frac{60}{2} = 10$ kmph	· • • • • • •	Assam $\Rightarrow 160 + 150 = 310$
	3x 6		Tamil Nadu \rightarrow 180 + 140 - 3
46.(4)	Number of candidates :	57 (5)	Paguired difference
	Bangalore \rightarrow 2000 + 5000 + 50 + 2050 + 750 = 9850	57.(5)	-160, 90 - 90
	$Delhi \rightarrow 15000 + 17000 + 160 + 11000 + 750 = 43910$		-100-00-00
	Mumbai → 17000 + 19500 + 70 + 7000 + 900 = 44470	58.(5)	Required average = $\frac{108+140+80}{2} = \frac{588}{2} = 129$
	Kolkata → 14900 + 17650 + 70 + 1300 + 1200 = 35120		3 3
47.(3)	Hyderabad	59.(5)	Required percentage
48.(3)	Number of officers = 72760		$=\frac{(100+60)}{100}\times 100 = \frac{160}{100}\times 100 = 95$
	Number of clerks = 105450		(80+80) 168
	Difference = 105450 - 72760 = 32690		(100+ 60) x100 = 160 x100 = 95 — (88 +80) 168
40 (4)	Deguined percentage 1200 100 8	60.(3)	Required ratio = 180 : 120 : 150 = 6 : 4 : 5
49.(4)	Required percentage = $\frac{14900}{14900} \times 100 = 8$	61.(2)	62.(1)
	2000	63.(4)	44707 64.(2) 273583
50.(2)	Required percentage = $\frac{2000}{0000} \times 100 = 22$	65.(2)	300
51 <i>(</i> 5)	9000	66.(4)	First and third Premises are Universal Affirmative (A-type).
51.(5)	0 + 5 = 5 5 + 12 - 10		Second Premise is Particular Affirmative (I-type).
	3 + 13 = 10 10 , 2E / 2		Some cycles are wheels.
	10 + 25 = 45		
	43 + 41 = 64		
	04 + 01 = 143		
	$\cdot \cdot ? = 145 + 85 = 230$		K
52 (4)	10 × 1 + 1 × 7 = 10 + 7 = 17		All wheels are mirrors.
02.(1)	$17 \times 2 \times 2 \times 7 = 24 \times 14 = 48$		$I + A \implies I$ -type Conclusion.
	$17 \times 2 + 2 \times 7 = 34 + 14 = 48$		Conclusion : Some cycles are mirrors.
	48 ^ 3 + 3 ^ / = 144 + 21 = 165		This is Conclusion I.
	165 × 4 + 4 × 7 = 660 + 28 = 688		Conclusion III is converse of this Conclusion.
	$688 \times 5 + 5 \times 7 = 3440 + 35 = 3475$		Therefore, Conclusions I and III follow.
	\therefore ? = 3475 × 6 + 6 × 7	67.(4)	First and second Premises are Particular Affirmative (I-
	= 20850 + 42 = 20892		type).
			Third Premise is Universal Affirmative (A-type).
53. (3)	1 - 3 = 3		Some hammers are beads.
	3 × 8 = 24		
	24 × 15 = 360		
	360 × 24 = 8640		All beads are rings.
	8640 × 35 = 302400		$I + A \implies I$ -type Conclusion
			Conclusion : Some hammers are rings.
	$\cdot \cdot : = 302400 \ 14515200$		Conclusion I is converse of this Conclusion.
54. (2)	12 × 1 + 2 × 1 = 12 + 2 = 14		Conclusion II is Converse of the first Premise.
		3	

Gran	d Test – SPP-180421					PACE	
91-95.	$\begin{array}{c c} \$ \Longrightarrow \ge & @ \Longrightarrow > & \# \Longrightarrow < \\ \hline \delta \Rightarrow = & \ast \Rightarrow \le & \end{array}$	96-100.	Enhance → Knowledge	co →	Po		
91.(2)	$H@T \implies H > T$		ine newspaper	\rightarrow	ro no		
()	$T \# F \Longrightarrow T < F$		good	\rightarrow	ro		
	$F \delta E \Longrightarrow F=E$		new	\rightarrow	јо		
	$E * V \Longrightarrow E \le V$		version	\rightarrow	SO		
	Therefore, H >T < F = E \leq V		book	\rightarrow	do		
	Conclusions		is/necessary	\rightarrow	yu bo∕to		
	I. V \$ F \implies V \geq F : Irue	96.(1)	is/necessary	97.(2)	00/10		
	II. E @ I \rightarrow E > I : If ue III. H @ V \rightarrow H > V : Not True	98.(3)		99.(4)		100.(1)	
	III. $\Pi \otimes V \longrightarrow \Pi > V$. Not fine IV $T \neq V \longrightarrow T > V \cdot True$						
92.(5)	$D \# R \implies D < R$						
,(0)	$R * K \Longrightarrow R < K$						
	$K @ F \Longrightarrow K > F$						
	$F \$ J \Longrightarrow F \ge J$						
	Therefore, D < R \leq K > F \geq J						
	Conclusions						
	I. $J \# R \implies J < R$: Not True						
	II. J # K \implies J < K: I rue						
	III. $K \# F \longrightarrow K < F$. Not five IV. $K @ D \longrightarrow K < D \cdot True$	En.	1. A.				
93.(5)	$N\delta B \implies N = B$, OF BAN					
, 01(0)	$B \otimes W \implies B \ge W$						
	$W # H \Rightarrow W < H$						
	$H * M \Longrightarrow H \le M$		101				
	Therefore, N = B \geq W < H \leq M		1 00 1				
	Conclusions						
	I. M Q W \Longrightarrow M > W : True						
	II. H @ N \Rightarrow H > N : Not True						
	III. W δ N \Longrightarrow W = N: Not True						
	$V.VV \neq N \implies VV < N$: Not free W is either smaller than or equal to N. Th	erefore either III					
	or IV is true		41				
94. (1)	$R * D \implies R \le D$	YI.	O'				
.,	$D $ $J \Rightarrow D \ge J$	WK OFRI	~/				
	$J \# M \Longrightarrow J < M$	A COLOR					
	$M @ K \Longrightarrow M > K$						
	Therefore, $R \le D \ge J < M > K$						
	Conclusions $K = 1$ Net True						
	I. K # J \implies K < J: Not Irue						
	II. $D \oplus W \longrightarrow D > W$. Not True						
	IV D @ K \implies D > K · Not True						
95.(5)	$M K \Rightarrow M > K$						
	$K @ N \Longrightarrow K > N$						
	$N * R \implies N \le R$						
	$R \# W \implies R < W$						
	Therefore, $M \ge K > N \le R < W$						
	Conclusions						
	I. W @ K ⇒ W > K : Not True						
	II. M \$ R \Rightarrow M \ge R: Not True						
	III. K @ W \Rightarrow K > W : Not True						
	$ V. V @ V \Rightarrow V > V $						